$B C K$-Algebras and Hyper BCK-Algebras Induced by a Deterministic Finite Automaton

M. Golmohammadian and M. M. Zahedi*
Department of Mathematics, Tarbiat Modares University, Tehran, Iran
E-mail: golmohamadian@modares.ac.ir
E-mail: zahedi_mm@ modares.ac.ir

Abstract

In this note first we define a $B C K$-algebra on the states of a deterministic finite automaton. Then we show that it is a $B C K$-algebra with condition (S) and also it is a positive implicative $B C K$-algebra. Then we find some quotient $B C K$-algebras of it. After that we introduce a hyper $B C K$-algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite automaton and we prove that this hyper $B C K$-algebra is simple, strong normal and implicative. Finally we define a semi continuous deterministic finite automaton. Then we introduce a hyper $B C K$-algebra S on the states of this automaton and we show that S is a weak normal hyper $B C K$-algebra.

Keywords: Deterministic finite automaton, $B C K$-algebra, hyper $B C K$-algebra, quotient $B C K$-algebra.

2000 Mathematics subject classification: 03B47, 18B20, 03D05, 06F35.

1. Introduction

The hyper algebraic structure theory was introduced by F. Marty [9] in 1934. Imai and Iseki [6] in 1966 introduced the notion of $B C K$-algebra. Meng and

[^0]Jun [10] defined the quotient hyper $B C K$-algebras in 1994. Torkzadeh, Roodbari and Zahedi [12] introduced the hyper stabilizers and normal hyper $B C K$ algebras. Corsini and Leoreanu [4] found some connections between a deterministic finite automaton and the hyper algebraic structure theory. Now in this note first we introduce a $B C K$-algebra on the states of a deterministic finite automaton and we prove some theorems and obtain some related results. Also we define a hyper $B C K$-algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite automaton. Finally we introduce a hyper $B C K$-algebra on the states of a semi continuous deterministic finite automaton.

2. Preliminaries

Definition 2.1. [10] Let X be a set with a binary operation "*" and a constant " 0 ". Then $(X, *, 0)$ is called a $B C K$-algebra if it satisfies the following condition:
(i) $((x * y) *(x * z)) *(z * y)=0$,
(ii) $(x *(x * y)) * y=0$,
(iii) $x * x=0$,
(iv) $0 * x=0$,
(v) $x * y=0$ and $y * x=0$ imply $x=y$.

For all $x, y, z \in X$.
For brevity we also call X a $B C K$-algebra. If in X we define a binary relation" \leq
" by $x \leq y$ if and only if $x * y=0$, then $(X, *, 0)$ is a $B C K$-algebra if and only
if it satisfies the following axioms for all $x, y, z \in X$; ;
(I) $(x * y) *(x * z) \leq z * y$,
(II) $x *(x * y) \leq y$,
(III) $x \leq x$,
(IV) $0 \leq x$,
(V) $x \leq y$ and $y \leq x$ imply $x=y$.

Definition 2.2. [10] Given a $B C K$-algebra $(X, *, 0)$ and given elements a, b of X, we define

$$
A(a, b)=\{x \in X \mid x * a \leq b\}
$$

If for all x, y in $X, A(x, y)$ has a greatest element then the $B C K$-algebra is called to be with condition (S).
Definition 2.3. [10] Let $(X, *, 0)$ be a $B C K$-algebra and let I be a nonempty subset of X. Then I is called to be an ideal of X if, for all x, y in X,
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

Theorem 2.4. [10] Let I be an ideal of $B C K$-algebra X. if we define the relation \sim_{I} on X as follows:

$$
x \sim_{I} y \text { if and only if } x o y \in I \text { and } y \text { o } x \in I
$$

Then \sim_{I} is a congruence relation on H.
Definition 2.5. [10] Let $(X, *, 0)$ be a $B C K$-algebra, I be an ideal of X and \sim_{I} be an equivalence relation on X. we denote the equivalence class containing x by C_{x} and we denote X / I by $\left\{C_{x}: x \in H\right\}$. Also we define the operation * $: X / I \times X / I \rightarrow X / I$ as follows:

$$
C_{x} * C_{y} \longrightarrow C_{x * y}
$$

Theorem 2.6. [10] Let I be an ideal of $B C K$-algebra X. Then $I=C_{0}$.
Theorem 2.7. [10] Let $(X, *, 0)$ be a $B C K$-algebra and I be an ideal of X. Then $\left(X / I, *, C_{0}\right)$ is a $B C K$-algebra.
Definition 2.8. [10] A $B C K$-algebra $(X, *, 0)$ is called positive implicative if it satisfies the following axiom:

$$
(x * z) *(y * z)=(x * y) * z
$$

for all $x, y, z \in X$.
Definition 2.9. [10] A nonempty subset I of a $B C K$-algebra X is called a varlet ideal of X if
(VI1) $x \in I$ and $y \leq x$ imply $y \in I$,
(VI2) $x \in I$ and $y \in I$ imply that there exists $z \in I$ such that $x \leq z$ and $y \leq z$.
Definition 2.10. [8] Let H be a nonempty set and "o" be a hyper operation on H, that is "o" is a function from $H \times H$ to $\mathcal{P}^{*}(H)=\mathcal{P}(H)-\{\emptyset\}$. Then H is called a hyper $B C K$-algebra if it contains a constant " 0 " and satisfies the following axioms:
(HK1) $(x \circ z) \circ(y \circ z) \ll x \circ y$,
(HK2) $(x \circ y) \circ z=(x \circ z)$ ○ y,
(HK3) x o $H \ll\{x\}$,
(HK4) $x \ll y, y \ll x \Longrightarrow x=y$.
For all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x o y$ and for every $A, B \subseteq$ $H, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ Such that $a \ll b$.
Theorem 2.11. [2] In a hyper $B C K$-algebra ($H, o, 0$), the condition (HK3) is equivalent to the condition:
x o $y \ll\{x\}$ for all $x, y \in H$.
Definition 2.12. [7] Let I be a non-empty subset of a hyper $B C K$-algebra H and $0 \in I$. Then,
(1) I is called a weak hyper $B C K$-ideal of H if x o $y \subseteq I$ and $y \in I$ imply that $x \in$ I, for all $x, y \in H$.
(2) I is called a hyper $B C K$-ideal of H if x o $y \ll I$ and $y \in I$ imply that $x \in$ I, for all $x, y \in H$.
(3) I is called a strong hyper $B C K$-ideal of H if $(x \circ y) \cap I \neq \emptyset$ and $y \in$ I imply that $x \in I$, for all $x, y \in H$.
Theorem 2.13. [7] Any strong hyper $B C K$-ideal of a hyper $B C K$-algebra H is a hyper $B C K$-ideal and a weak hyper $B C K$-ideal. Also any hyper $B C K$-ideal of a hyper $B C K$-algebra H is a weak hyper $B C K$-ideal.
Definition 2.14. [12] Let H be a hyper $B C K$-algebra and A be a nonempty subset of H. Then the $\operatorname{sets}_{l} A=\{x \in H \mid a \in a$ o $x \quad \forall a \in A\}$ and $A_{r}=$ $\{x \in H \mid x \in x$ o a $\forall a \in A\}$ are called left hyper $B C K$-stabilizer of A and right hyper $B C K$-stabilizer of A, respectively.
Definition 2.15. [12] A hyper $B C K$-algebra H is called:
(i) Weak normal, if a_{r} is a weak hyper $B C K$-ideal of H for any element $a \in H$.
(ii) Normal, if a_{r} is a hyper $B C K$-ideal of H for any element $a \in H$.
(iii) Strong normal, if a_{r} is a strong hyper $B C K$-ideal of H for any element $a \in$ H.
Definition 2.16. [11] A hyper $B C K$-algebra ($H, o, 0$) is called simple if for all distinct elements $a, b \in H-\{0\}, \quad a \not \leq b$ and $b \not \leq a$.
Definition 2.17. [2] A hyper $B C K$-algebra ($H, o, 0$) is called:
(i) Weak positive implicative (resp. positive implicative), if it satisfies the axiom

$$
(x \circ z) \circ(y \circ z) \ll((x \circ y) \circ z)(\operatorname{resp} . \quad(x \circ z) \circ(y \circ z)=(x \circ y) \circ z)
$$

for all $x, y, z \in H$.
(ii) Implicative. if $x \ll x \circ$ ($y \circ x$), for all $x, y, z \in H$.

Definition 2.18. [5] A deterministic finite automaton consists of:
(i) A finite set of states, often denoted by S.
(ii) A finite set of input symbols, often denoted by M.
(iii) A transition function that takes as arguments a state and an input symbol and returns a state. The transition function will commonly be denoted by t, and in fact $t: S \times M \rightarrow S$ is a function.
(iv) A start state, one of the states in S such as s_{0}.
(v) A set of final or accepting states F. The set F is a subset of S.

For simplicity of notation we write $\left(S, M, s_{0}, F, t\right)$ for a deterministic finite automaton.
Remark 2.19. [5] Let $\left(S, M, s_{0}, F, t\right)$ be a deterministic finite automaton. A word of M is the product of a finite sequence of elements in M, λ is empty word and M^{*} is the set of all words on M. We define recursively the extended transition function, $t^{*}: S \times M^{*} \longrightarrow S$, as follows:

$$
\begin{gathered}
\forall s \in S, \forall a \in M, t^{*}(s, a)=t(s, a), \\
\forall s \in S, t^{*}(s, \lambda)=s
\end{gathered}
$$

$$
\forall s \in S, \forall x \in M^{*}, \forall a \in M, t^{*}(s, a x)=t^{*}(t(s, a), x) .
$$

Note that the length $\ell(x)$ of a word $x \in M^{*}$ is the number of its letters. so $\ell(\lambda)=0$ and $\ell\left(a_{1} a_{2}\right)=2$, where $a_{1}, a_{2} \in M$.
Definition 2.20. [4] The state s of $S-\left\{s_{0}\right\}$ will be called connected to the state s_{0} of S if there exists $x \in M^{*}$, such that $s=t^{*}\left(s_{0}, x\right)$.

3. $B C K$-ALGEBRAS INDUCED BY A DETERMINISTIC FINITE AUTOMATON

In this section we present some relationships between $B C K$-algebras and deterministic finite automata.
Definition 3.1. Let $\left(S, M, s_{0}, F, t\right)$ be a deterministic finite automaton. If $s \in S-\left\{s_{0}\right\}$ is connected to s_{0}, then the order of a state s is the natural number $l+1$, where $l=\min \left\{\ell(x) \mid t^{*}\left(s_{0}, x\right)=s, \quad x \in M^{*}\right\}$, and if $s \in$ $S-\left\{s_{0}\right\}$ is not connected to s_{0} we suppose that the order of s is 1 . Also we suppose that the order of s_{0} is 0 .
We denote the order of a state s by ord s.
Now, we define the relation \sim on the set of states S, as follows:

$$
s_{1} \sim s_{2} \Leftrightarrow \text { ord } s_{1}=\text { ord } s_{2}
$$

It is obvious that this relation is an equivalence relation on S.
Note that we denote the equivalence class of s by \bar{s}. Also we denote the set of all these classes by \bar{S}.
Theorem 3.2. Let $\left(S, M, s_{0}, F, t\right)$ be a deterministic finite automaton. We define the following operation on S :
$\forall\left(s_{1}, s_{2}\right) \in S^{2}, \quad s_{1}$ os $_{2}= \begin{cases}s_{0}, & \text { if ord } s_{1}<\text { ord } s_{2}, \quad s_{1}, s_{2} \neq s_{0}, \quad s_{1} \neq s_{2} \\ s_{1}, & \text { if ord } s_{1} \geq \text { ord } s_{2}, \quad s_{1}, s_{2} \neq s_{0}, \quad s_{1} \neq s_{2} \\ s_{0}, & \text { if } s_{1}=s_{2} \\ s_{0}, & \text { if } s_{1}=s_{0}, \quad s_{2} \neq s_{0} \\ s_{1}, & \text { if } s_{2}=s_{0}, \quad s_{1} \neq s_{0}\end{cases}$
Then $\left(S, o, s_{0}\right)$ is a $B C K$-algebra and s_{0} is the zero element of S.
Proof. By definition of the operation ' o ', we know that $t o t=s_{0}$ and $s_{0} o t=s_{0}$ for all $t \in S$. So (S, o, s_{0}) satisfies (III) and (IV).
Now we consider the following situations to show that (S, o, s_{0}) satisfies (I) and (II).
(i) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$ and ord $s_{1}<$ ord $s_{2}<\operatorname{ord} s_{3}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} \circ s_{0}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we obtain that in this case (I) holds.

On the other hand, $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Hence, in this case (II) holds.
(ii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$ and ord $s_{2}<$ ord $s_{1}<\operatorname{ord} s_{3}$. Then $\left(s_{1} o s_{2}\right) \circ\left(s_{1} o s_{3}\right)=$ $s_{1} \circ s_{0}=s_{1}$ and s_{3} o $s_{2}=s_{3}$. Since $s_{1} \circ s_{3}=s_{0}$ we get that $s_{1} \leq s_{3}$. Thus in this case (I) holds.
Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Therefore in this case (II) holds.
(iii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$ and ord $s_{2}<$ ord $s_{3}<$ ord s_{1}. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{1}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. So in this case (II) holds.
(iv) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$ and ord $s_{1}<$ ord $s_{3}<$ ord s_{2}. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} \circ s_{0}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds. Also $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Hence, in this case (II) holds.
(v) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$ and ord $s_{3}<$ ord $s_{1}<$ ord s_{2}. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} o s_{1}=s_{0}$ and $s_{3} o s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Thus in this case (II) holds.
(vi) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$ and ord $s_{3}<$ ord $s_{2}<$ ord s_{1}. Then $\left(s_{1} \circ s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds. Also $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. So in this case (II) holds. (vii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{2}<$ ord s_{3} and $s_{1} \neq s_{2}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{1} o s_{3}=s_{0}$ we get that $s_{1} \leq s_{3}$. So in this case (I) holds.
On the other hand, $s_{1} \circ\left(s_{1} o s_{2}\right)=s_{1} o s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. Therefore in this case (II) holds.
(viii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{2}>$ ord s_{3} and $s_{1} \neq s_{2}$. Then $\left(s_{1} \circ s_{2}\right) \circ\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds.
Also $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{1}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Hence, in this case (II) holds.
(ix) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{3}<$ ord s_{2} and $s_{1} \neq s_{3}$. Then $\left(s_{1} \circ s_{2}\right) \circ\left(s_{1} \circ s_{3}\right)=s_{0} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Thus in this case (II) holds.
(x) $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{3}>$ ord s_{2} and $s_{1} \neq s_{3}$.

Then $\left(s_{1} \circ s_{2}\right) \circ\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we get that in this case (I) holds.

Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. So in this case (II) holds. (xi) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{2}=$ ord $s_{3}>$ ord s_{1} and $s_{2} \neq s_{3}$. Then $\left(s_{1} \circ s_{2}\right) o\left(s_{1} \circ s_{3}\right)=s_{0} o s_{0}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} \circ\left(s_{1} o s_{2}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Therefore in this case (II) holds.
(xii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{2}=$ ord $s_{3}<\operatorname{ord} s_{1}$ and $s_{2} \neq s_{3}$. Then $\left(s_{1} \circ s_{2}\right) \circ\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we get that in this case (I) holds.
Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. Hence, in this case (II) holds.
(xiii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{2}=$ ord s_{3} and $s_{1} \neq s_{2} \neq s_{3} \neq s_{1}$. Then $\left(s_{1} \circ s_{2}\right) o\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we obtain that in this case (I) holds.
On the other hand, s_{1} o $\left(s_{1} o s_{2}\right)=s_{1} o s_{1}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Thus in this case (II) holds.
(xiv) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{3}, s_{1} \neq s_{3}$ and $s_{1}=s_{2}$. Then $\left(s_{1} \circ s_{2}\right) o\left(s_{1} \circ s_{3}\right)=s_{0} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we get that in this case (I) holds.
Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{1} \circ s_{2}=s_{0}$. So in this case (II) holds. (xv) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{2}, s_{1} \neq s_{2}$ and $s_{1}=s_{3}$. Then $\left(s_{1} \circ s_{2}\right) \circ\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{1} \circ s_{3}=s_{0}$ we get that $s_{1} \leq s_{3}$. So in this case (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{1}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Therefore in this case (II) holds.
(xvi) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}=$ ord $s_{2}, s_{1} \neq s_{2}$ and $s_{2}=s_{3}$. Then $\left(s_{1} \circ s_{2}\right) o\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds.
Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. Hence, in this case (II) holds.
(xvii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}<$ ord s_{3} and $s_{1}=s_{2}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} \circ s_{0}=s_{0}$ and $s_{3} \circ s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Thus in this case (II) holds.
(xviii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}>$ ord s_{3} and $s_{1}=s_{2}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} \circ s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds. Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{1} \circ s_{2}=s_{0}$. So in this case (II) holds. (xix) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}<$ ord s_{2} and $s_{1}=s_{3}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} \circ s_{0}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.

On the other hand, $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} \circ s_{2}=s_{0}$. Therefore in this case (II) holds.
(xx) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}>$ ord s_{2} and $s_{1}=s_{3}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{1} \circ s_{0}=s_{1}$ and $s_{3} \circ s_{2}=s_{3}=s_{1}$. Since $s_{1} \leq s_{1}$ we get that in this case (I) holds.
Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. Hence, in this case (II) holds.
(xxi) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}<$ ord s_{2} and $s_{2}=s_{3}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{0} \circ s_{0}=s_{0}$ and $s_{3} o s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{1} \circ s_{2}=s_{0}$. Thus in this case (II) holds.
(xxii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}$, ord $s_{1}>$ ord s_{2} and $s_{2}=s_{3}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=$ $s_{1} \circ s_{1}=s_{0}$ and $s_{3} o s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds. Also $s_{1} o\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. So in this case (II) holds. (xxiii) Let $s_{1}=s_{2}=s_{3}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{0} o s_{0}=s_{0}$ and $s_{3} o s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{0}$. Therefore in this case (II) holds.
(xxiv) Let $s_{1}=s_{0}$ and $s_{2}, s_{3} \neq s_{0}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{0} o s_{0}=s_{0}$. Let $s_{3} o s_{2}=t$ and $t \in S$. Since $s_{0} \leq t$ we get that in this case (I) holds.
Also $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{0} \circ s_{0}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. Hence, in this case (II) holds.
(xxv) Let $s_{2}=s_{0}, \quad s_{1}, s_{3} \neq s_{0}$. Since s_{1} o $s_{3}=s_{1}$ or s_{1} o $s_{3}=s_{0}$, we have two cases:
(6) $\left(s_{1}\right.$ o $\left.s_{2}\right)$ o $\left(s_{1}\right.$ o $\left.s_{3}\right)=s_{1}$ o $s_{1}=s_{0}$. We know that s_{3} o $s_{2}=s_{3}$. Since $s_{0} \leq s_{3}$ we conclude that in this case (I) holds.
(7) $\left(s_{1} \circ s_{2}\right) o\left(s_{1} \circ s_{3}\right)=s_{1} \circ s_{0}=s_{1}$. We know that $s_{3} o s_{2}=s_{3}$ and in this case $s_{1} \circ s_{3}=s_{0}$. So $s_{1} \leq s_{3}$ and (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{1} o s_{1}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Thus in this case (II) holds.
(xxvi) Let $s_{3}=s_{0}$ and $s_{1}, s_{2} \neq s_{0}$. Since s_{1} o $s_{2}=s_{1}$ or s_{1} o $s_{2}=s_{0}$, we obtain that $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{1} o s_{1}=s_{0}$ or $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{0} \circ s_{1}=s_{0}$. Also $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we conclude that in this case (I) holds.
The proof of (II) is studied in other cases.
(xxvii) Let $s_{1} \neq s_{0}$ and $s_{2}=s_{3}=s_{0}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{1}$ o $s_{1}=s_{0}$ and $s_{3} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{1} \circ s_{1}=s_{0}$ and $s_{0} \circ s_{2}=s_{0}$. Therefore in this case (II) holds.
(xxviii) Let $s_{3} \neq s_{0}$ and $s_{1}=s_{2}=s_{0}$. Then $\left(s_{1} o s_{2}\right) o\left(s_{1} o s_{3}\right)=s_{0} o s_{0}=s_{0}$. and $s_{1} \circ s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we get that in this case (I) holds.

Also $s_{1} \circ\left(s_{1} \circ s_{2}\right)=s_{0} \circ s_{0}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Hence, in this case (II) holds.
(xxix) Let $s_{2} \neq s_{0}$ and $s_{1}=s_{3}=s_{0}$. Then $\left(\begin{array}{lll}s_{1} & o & s_{2}\end{array}\right) o\left(\begin{array}{lll}s_{1} & o & s_{3}\end{array}\right)=s_{0} o s_{0}=s_{0}$ and $s_{3} o s_{2}=s_{0}$. Since $s_{0} \leq s_{0}$ we obtain that in this case (I) holds.
On the other hand, $s_{1} o\left(s_{1} o s_{2}\right)=s_{0} o s_{0}=s_{0}$ and $s_{0} o s_{2}=s_{0}$. Thus in this case (II) holds.
So we conclude that (S, o, s_{0}) satisfies (I) and (II).
To prove (V), Let $s_{1} \leq s_{2}$ and $s_{2} \leq s_{1}$. If $s_{1}=s_{2}$, then we are done. Otherwise, since $s_{1} \leq s_{2}$, there exist two cases:
(i) ord $s_{1}<$ ord $s_{2}, \quad s_{1}, s_{2} \neq s_{0}, \quad s_{1} \neq s_{2}$. Then $s_{2} o s_{1}=s_{2}$. Therefore $s_{2} \not \leq s_{1}$, which is a contradiction.
(ii) $s_{1}=s_{0}, s_{2} \neq s_{0}$. Then $s_{2} o s_{1}=s_{2} o s_{0}=s_{2}$. Thus $s_{2} \not \leq s_{1}$, which is a contradiction.
So we show that $\left(S, o, s_{0}\right)$ is a $B C K$-algebra.
Example 3.3. Let $A=\left(S, M, s_{0}, F, t\right)$ be a deterministic finite automaton such that $S=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, M=\{a, b\}, s_{0}=q_{0}, F=\left\{q_{1}, q_{3}\right\}$ and t is defiend by

Figure 1

$$
\begin{aligned}
& t\left(q_{0}, a\right)=q_{1}, t\left(q_{0}, b\right)=q_{2}, t\left(q_{1}, a\right)=q_{2}, t\left(q_{1}, b\right)=q_{3} \\
& t\left(q_{2}, a\right)=q_{3}, t\left(q_{2}, b\right)=q_{3}, t\left(q_{3}, a\right)=q_{3}, t\left(q_{3}, b\right)=q_{3}
\end{aligned}
$$

It is easy to see that ord $q_{1}=$ ord $q_{2}=2$, ord $q_{3}=3$ and ord $q_{0}=0$. According to the definition of operation "o" which is defined in Theorem 3.2, we have the following table:

Table 1.

O	q_{0}	q_{1}	q_{2}	q_{3}
q_{0}	q_{0}	q_{0}	q_{0}	q_{0}
q_{1}	q_{1}	q_{0}	q_{1}	q_{0}
q_{2}	q_{2}	q_{2}	q_{0}	q_{0}
q_{3}	q_{3}	q_{3}	q_{3}	q_{0}

In this section we suppose that $\left(S, o, s_{0}\right)$ is the $B C K$-algebra, which is defined in Theorem 3.2.
Notation. We denote the class of all states which their order is n by $\overline{s_{n}}$.
Theorem 3.4. (S, o, s_{0}) is a $B C K$-algebra with condition (S).
Proof: Let $s_{1}, s_{2} \in S$, ord $s_{1}=n$ and ord $s_{2}=m$. Then we should consider following situations:
(1) Let ord $s_{1}<$ ord $s_{2}, \quad s_{1}, s_{2} \neq s_{0}, \quad s_{1} \neq s_{2}$. Then $A\left(s_{1}, s_{2}\right)=$ $\bigcup_{i=0}^{m-1} \overline{s_{i}} \cup\left\{s_{2}\right\}$ and the greatest element of $A\left(s_{1}, s_{2}\right)$ is s_{2}.
(2) Let ord $s_{1} \geq$ ord $s_{2}, \quad s_{1}, s_{2} \neq s_{0}, \quad s_{1} \neq s_{2}$. Then $A\left(s_{1}, s_{2}\right)=$ $\bigcup_{i=0}^{n-1} \overline{s_{i}} \cup\left\{s_{1}\right\}$ and the greatest element of $A\left(s_{1}, s_{2}\right)$ is s_{1}.
(3) $s_{1}=s_{2}$. Then $A\left(s_{1}, s_{2}\right)=\bigcup_{i=0}^{n-1} \overline{s_{i}} \cup\left\{s_{1}\right\}$ and the greatest element of $A\left(s_{1}, s_{2}\right)$ is s_{1}.
(4) Let $s_{1}=s_{0}, \quad s_{2} \neq s_{0}$. Then $A\left(s_{1}, s_{2}\right)=\bigcup_{i=0}^{m-1} \overline{s_{i}} \cup\left\{s_{2}\right\}$ and the greatest element of $A\left(s_{1}, s_{2}\right)$ is s_{2}.
(5) Let $s_{1} \neq s_{0}, \quad s_{2}=s_{0}$. Then $A\left(s_{1}, s_{2}\right)=\bigcup_{i=0}^{n-1} \overline{s_{i}} \cup\left\{s_{1}\right\}$ and the greatest element of $A\left(s_{1}, s_{2}\right)$ is s_{1}.
Theorem 3.5. Let $I_{n}=\left\{s \in S \mid s \in \bigcup_{i=0}^{n} \overline{s_{i}}\right\}$ for any $n \in N$. Then I_{n} is an ideal of $\left(S, o, s_{0}\right)$.
Proof. Suppose that $s_{1} o s_{2} \in I_{n}$ and $s_{2} \in I_{n}$, then we have the following situations:

$$
\begin{equation*}
s_{1} \neq s_{2}, s_{2} \neq s_{0} \text { and } \text { ords } s_{2}<o r d s_{1} \tag{1}
\end{equation*}
$$

By definition of the operation " 0 ", we know that $s_{1} o s_{2}=s_{1}$. So $s_{1} \in I_{n}$.

$$
\begin{equation*}
s_{1} \neq s_{2}, s_{2} \neq s_{0} \text { and } \text { ords } s_{2}=\text { ords } s_{1} \tag{2}
\end{equation*}
$$

Since $s_{2} \in I_{n}$ and $\overline{s_{2}} \subseteq I_{n}$, we obtain that $s_{1} \in I_{n}$.

$$
\begin{equation*}
s_{1} \neq s_{2}, s_{1} \neq s_{0} \text { and } \operatorname{ord} s_{1}<\operatorname{ords}_{2} . \tag{3}
\end{equation*}
$$

By definition of I_{n}, it is easy to see that $s_{1} \in I_{n}$.

$$
\begin{equation*}
s_{1}=s_{2} . \tag{4}
\end{equation*}
$$

It is clear that $s_{1} \in I_{n}$.

$$
\begin{equation*}
s_{2}=s_{0} \tag{5}
\end{equation*}
$$

By definition of the operation " o ", we know that $s_{1} o s_{2}=s_{1}$. So $s_{1} \in I_{n}$.
(6) $\mathrm{s}_{1}=s_{0}$.

Since $\mathrm{s}_{0} \in I_{n}$, we get that $s_{1} \in I_{n}$.
Also by definition of I_{n}, we know that $s_{0} \in I_{n}$. So I_{n} is an ideal of S.
Theorem 3.6. Let I_{n} be a set, which is defined in Theorem 3.5. Then $C_{x}=\{x\}$ for all $x \notin I_{n}$.
Proof. Let $x \notin I_{n}$. By Theorem 2.6, we know that $I_{n}=C_{s_{0}}$. So $s_{0} \notin C_{x}$. Now we suppose that $y \in C_{x}$ and $y \neq x$. By definition of the equivalence relation $\sim_{I_{n}}$, we know that x o $y \in I_{n}$ and y o $x \in I_{n}$. Since $x \notin I_{n}$ and x o $y \in I_{n}$, we obtain that ord $x \nsupseteq$ ord y. So ord $y>$ ord x and y o $x=y \in I_{n}=C_{s_{0}}$, which is a contradiction. Hence, $y=x$.
Theorem 3.7. Let I_{n} be the ideal of S which is defined in Theorem 3.5. Then $\left(S / I_{n}, *, C_{S_{0}}\right)$ is a $B C K$-algebra.
Proof. By Theorem 2.7, it is obvious that $\left(S / I_{n}, *, C_{s_{0}}\right)$ is a $B C K$-algebra.
Theorem 3.8. $\left(S, o, s_{0}\right)$ is a positive implicative $B C K$-algebra.
Proof. By considering 29 situations which have been stated in the proof of Theorem 3.2, we get that in all cases $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=\left(s_{1} \circ s_{2}\right) o s_{3}$, for all $s_{1}, s_{2}, s_{3} \in S$. So $\left(S, o, s_{0}\right)$ is a positive implicative $B C K$-algebra.
Theorem 3.9. Let $n=\max \{$ ord $s \mid s \in S\}$. Then $I=\bigcup_{i=0}^{m-1} \overline{s_{i}} \cup\{z\}$ for $1 \leq m \leq n$ and $z \in s_{m}$, is a varlet ideal of $\left(S, o, s_{0}\right)$.
Proof. To prove (VI1), we suppose that $x \in I$ and $y \leq x$. Then $s_{0}=y$ o x and we have three cases:
(6) Let ord $y<$ ord $x, \quad x, y \neq s_{0}$ and $x \neq y$. Then by definition of I, it is obvious that $y \in I$.
(7) Let $x=y$. Then it is clear that $y \in I$.
(3) Let $y=s_{0}, x \neq s_{0}$. Then by definition of I, it is easy to see that $s_{0}=y \in I$. Therefore (VI1) holds.
Now we show that I satisfies (VI2). let $x \in I, y \in I$ and $x, y \neq z$. Since ord $x<$ ord z and ord $y<$ ord z, we get that $x o z=s_{0}$ and y o $z=s_{0}$. So $x \leq z$ and $y \leq z$. Also if $x \in I, y \in I, x=z$ and $y \neq z$, then $x o z=z o z=s_{0}$ and $y o z=s_{0}$. Thus $x \leq z$ and $y \leq z$. Similarly we can prove that $x \leq z$ and $y \leq z$ for the following cases:

$$
\begin{align*}
& x \in I, y \in I, x \neq z \text { and } y=z \tag{6}\\
& x \in I, y \in I, x=z \text { and } y=z \tag{7}
\end{align*}
$$

So (VI2) holds.

4. Hyper $B C K$-algebras induced by a deterministic finite
 AUTOMATON

Theorem 4.1. Let $\left(S, M, s_{0}, F, t\right)$ be a deterministic finite automata. We define the following hyper operation on \bar{S} :
$\forall\left(\overline{s_{1}}, \overline{s_{2}}\right) \in \bar{S}^{2}, \overline{s_{1}} o \overline{s_{2}}=\left\{\begin{array}{cc}\overline{s_{1}}, & \text { if } \overline{s_{1}} \neq \overline{s_{2}}, \overline{s_{2}} \neq \overline{s_{0}} \neq \overline{s_{1}} \\ \left\{\overline{s_{0}}, \overline{s_{1}}\right\}, & \text { if } \overline{s_{1}}=\overline{s_{2}} \\ \overline{s_{0}}, & \text { if } \overline{s_{1}}=\overline{s_{0}}, \overline{s_{2}} \neq \overline{s_{0}} \\ \overline{s_{1}}, & \text { if } \overline{s_{1}} \neq \overline{s_{0}}, \overline{s_{2}}=\overline{s_{0}} .\end{array}\right.$
Then $\left(\bar{S}, o, \overline{s_{0}}\right)$ is a hyper $B C K$-algebra and $\overline{s_{0}}$ is the zero element of \bar{S}.
Proof. First we have to consider the following situations to show that ($\bar{S}, o, \overline{s_{0}}$) satisfies (HK1) and (HK2).
(i) Let $\overline{s_{1}}, \overline{s_{2}}, \overline{s_{3}} \neq \overline{s_{0}}$ and $\overline{s_{3}} \neq \overline{s_{2}} \neq \overline{s_{1}} \neq \overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=$ $\overline{s_{1}} o \overline{s_{2}}$. Since $\bar{s} o \bar{s}=\left\{\overline{s_{0}}, \bar{s}\right\}$ we obtain that $\bar{s} \ll \bar{s}$ for any $\bar{s} \in \bar{S}$. So $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
Also ($\left.\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{3}}=\overline{s_{1}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}}$. Thus in this case (HK2) holds.
(ii) Let $\overline{s_{1}}, \overline{s_{2}}, \overline{s_{3}} \neq \overline{s_{0}}$ and $\overline{s_{1}}=\overline{s_{2}} \neq \overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\overline{s_{1}} o \overline{s_{2}}$. So $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\} o \overline{s_{3}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=$ $\overline{s_{1}} o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$. Therefore in this case (HK2) holds.
(iii) Let $\overline{s_{1}}, \overline{s_{2}}, \overline{s_{3}} \neq \overline{s_{0}}$ and $\overline{s_{1}}=\overline{s_{3}} \neq \overline{s_{2}}$.

Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\left\{\overline{s_{0}}, \overline{s_{1}}\right\} o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}}$. Since $\overline{s_{0}} o \overline{s_{1}}=\overline{s_{0}}$ we obtain that $\overline{s_{0}} \ll \overline{s_{1}}$ and also we know that $\overline{s_{1}} \ll \overline{s_{1}}$. Hence, $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
Also ($\overline{s_{1}} o \overline{s_{2}}$) $o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{3}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\} o \overline{s_{2}}=$ $\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$. So in this case (HK2) holds.
(iv) Let $\overline{s_{1}}, \overline{s_{2}}, \overline{s_{3}} \neq \overline{s_{0}}$ and $\overline{s_{2}}=\overline{s_{3}} \neq \overline{s_{1}}$.
$\operatorname{Then}\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\overline{s_{1}} o\left\{\overline{s_{0}}, \overline{s_{2}}\right\}=\overline{s_{1}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}}$. Thus $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.

On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{3}}=\overline{s_{1}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{2}}=$ $\overline{s_{1}}$. Therefore in this case (HK2) holds.
(v) Let $\overline{s_{1}}=\overline{s_{2}}=\overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\left\{\overline{s_{0}}, \overline{s_{1}}\right\} o\left\{\overline{s_{0}}, \overline{s_{1}}\right\}=$ $\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\overline{s_{1}} o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$. So $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK1).
Also $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\left(\overline{s_{1}} o \overline{s_{1}}\right) o \overline{s_{1}}=\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}$. Hence, in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK2).
(vi) Let $\overline{s_{2}}, \overline{s_{3}} \neq \overline{s_{0}}, \quad \overline{s_{1}}=\overline{s_{0}}$ and $\overline{s_{2}} \neq \overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) \circ\left(\overline{s_{2}} o \overline{s_{3}}\right)=$ $\overline{s_{0}} o \overline{s_{2}}=\overline{s_{0}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{0}} o \overline{s_{2}}=\overline{s_{0}}$. Thus $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{0}} o \overline{s_{3}}=\overline{s_{0}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{0}} o \overline{s_{2}}=$ $\overline{s_{0}}$. So in this case (HK2) holds.
(vii) Let $\overline{s_{2}}, \overline{s_{3}} \neq \overline{s_{0}}, \quad \overline{s_{1}}=\overline{s_{0}}$ and $\overline{s_{2}}=\overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=$ $\overline{s_{0}} o\left\{\overline{s_{0}}, \overline{s_{2}}\right\}=\overline{s_{0}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{0}} o \overline{s_{2}}=\overline{s_{0}}$. Therefore $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll$ $\overline{s_{1}} o \overline{s_{2}}$ and in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK1).
$\operatorname{Also}\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{0}} o \overline{s_{3}}=\overline{s_{0}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{0}} o \overline{s_{2}}=\overline{s_{0}}$. So in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK2).
(viii) Let $\overline{s_{1}}, \overline{s_{3}} \neq \overline{s_{0}}, \quad \overline{s_{2}}=\overline{s_{0}}$ and $\overline{s_{1}} \neq \overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=$ $\overline{s_{1}} o \overline{s_{0}}=\overline{s_{1}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{0}}=\overline{s_{1}}$. Hence, $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{3}}=\overline{s_{1}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{0}}=$ $\overline{s_{1}}$. Thus in this case (HK2) holds.
(ix) Let $\overline{s_{1}}, \overline{s_{3}} \neq \overline{s_{0}}, \quad \overline{s_{2}}=\overline{s_{0}}$ and $\overline{s_{1}}=\overline{s_{3}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=$ $\left\{\overline{s_{0}}, \overline{s_{1}}\right\} o \overline{s_{0}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{0}}=\overline{s_{1}}$. Since $\overline{s_{0}} \ll \overline{s_{1}}$ and $\overline{s_{1}} \ll \overline{s_{1}}$ we obtain that $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK1).
Also $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{3}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\} o \overline{s_{0}}=$ $\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$. Hence, in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK2).
(x) Let $\overline{s_{1}}, \overline{s_{2}} \neq \overline{s_{0}}, \overline{s_{3}}=\overline{s_{0}}$ and $\overline{s_{1}} \neq \overline{s_{2}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\overline{s_{1}} o \overline{s_{2}}=$ $\overline{s_{1}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}}$. Therefore $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{0}}=\overline{s_{1}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{2}}=$ $\overline{s_{1}}$. So in this case (HK2) holds.
(xi) Let $\overline{s_{1}}, \overline{s_{2}} \neq \overline{s_{0}}, \quad \overline{s_{3}}=\overline{s_{0}}$ and $\overline{s_{1}}=\overline{s_{2}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=$ $\overline{s_{1}} o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\overline{s_{1}} o \overline{s_{2}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$. Since $\overline{s_{0}} \ll \overline{s_{0}}$ and $\overline{s_{1}} \ll \overline{s_{1}}$ we get that $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK1).
Also $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ o $\overline{s_{0}}=\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{2}}=$ $\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$. Thus in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK2).
(xii) Let $\overline{s_{1}}=\overline{s_{2}}=\overline{s_{0}}$ and $\overline{s_{3}} \neq \overline{s_{0}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\overline{s_{0}} o \overline{s_{0}}=\overline{s_{0}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{0}}$. Therefore $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.

On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{0}} o \overline{s_{3}}=\overline{s_{0}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{0}} o \overline{s_{0}}=$ $\overline{s_{0}}$. Hence, in this case (HK2) holds.
(xiii) Let $\overline{s_{1}}=\overline{s_{3}}=\overline{s_{0}}$ and $\overline{s_{2}} \neq \overline{s_{0}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\overline{s_{0}} o \overline{s_{2}}=\overline{s_{0}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{0}}$. So $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK1).
On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{0}} o \overline{s_{0}}=\overline{s_{0}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{0}} o \overline{s_{2}}=$ $\overline{s_{0}}$. Thus this case $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK2).
(xiv) Let $\overline{s_{2}}=\overline{s_{3}}=\overline{s_{0}}$ and $\overline{s_{1}} \neq \overline{s_{0}}$. Then $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right)=\overline{s_{1}} o \overline{s_{0}}=\overline{s_{1}}$ and $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}}$. Therefore $\left(\overline{s_{1}} o \overline{s_{3}}\right) o\left(\overline{s_{2}} o \overline{s_{3}}\right) \ll \overline{s_{1}} o \overline{s_{2}}$ and in this case (HK1) holds.
On the other hand, $\left(\overline{s_{1}} o \overline{s_{2}}\right) o \overline{s_{3}}=\overline{s_{1}} o \overline{s_{0}}=\overline{s_{1}}$ and $\left(\overline{s_{1}} o \overline{s_{3}}\right) o \overline{s_{2}}=\overline{s_{1}} o \overline{s_{0}}=$ $\overline{s_{1}}$. Hence, in this case (HK2) holds.
So we show that $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK1) and (HK2).
Now we should prove that $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK3). By Theorem 2.11, it is enough to show that $\overline{s_{1}} o \overline{s_{2}} \ll \overline{s_{1}}$ for all $\overline{s_{1}}, \overline{s_{2}} \in \bar{S}$. By definition of the hyper operation "o" we know that $\overline{s_{1}} o \overline{s_{2}}$ is equal to $\overline{s_{1}}$ or $\left\{\overline{s_{0}}, \overline{s_{1}}\right\}$ or $\overline{s_{0}}$ for any $\overline{s_{1}}, \overline{s_{2}} \in \bar{S}$. Also we know that $\overline{s_{1}} \ll \overline{s_{1}}$ and $\overline{s_{0}} \ll \overline{s_{1}}$.
Hence $\left(\bar{S}, o, \overline{s_{0}}\right)$ satisfies (HK3).
To prove (HK4), Let $\overline{s_{1}} \ll \overline{s_{2}}$ and $\overline{s_{2}} \ll \overline{s_{1}}$. If $\overline{s_{1}}=\overline{s_{2}}$, then we are done. Otherwise, since $\overline{s_{1}} \ll \overline{s_{2}}$, we obtain that $\overline{s_{1}}=\overline{s_{0}}, \overline{s_{2}} \neq \overline{s_{0}}$. So $\overline{s_{2}} o \overline{s_{1}}=$ $\overline{s_{2}} o \overline{s_{0}}=\overline{s_{2}}$. Therefore $\overline{s_{2}} \not \leq \overline{s_{1}}$, which is a contradiction.
Example 4.2. Consider the deterministic finite automaton $A=\left(S, M, s_{0}, F, t\right)$ in Example 3.3. Then the structure of the hyper BCK-algebra ($\left.\bar{S}, o, \overline{s_{0}}\right)$ induced on \bar{S} according to Theorem 4.1 is as follows:

Table 2.

O	$\overline{q_{0}}$	$\overline{q_{1}}$	$\overline{q_{3}}$
$\overline{q_{0}}$	$\overline{q_{0}}$	$\overline{q_{0}}$	$\overline{q_{0}}$
$\overline{q_{1}}$	$\overline{q_{1}}$	$\left\{\overline{q_{0}}, \overline{q_{1}}\right\}$	$\overline{q_{1}}$
$\overline{q_{3}}$	$\overline{q_{3}}$	$\overline{q_{3}}$	$\left\{\overline{q_{0}}, \overline{q_{3}}\right\}$

Theorem 4.3. Let $\left(\bar{S}, o, \overline{s_{0}}\right)$ be the hyper $B C K$-algebra, which is defined in Theorem 4.1. Then $\left(\bar{S}, o, \overline{s_{0}}\right)$ is a strong normal hyper $B C K$-algebra.
Proof. By definition of the hyper operation "o", we obtain that $\bar{a} \in \bar{a} o \bar{t}$, for any \bar{a} and \bar{t} in \bar{S}. So we have:

$$
{ }_{l} \bar{a}=\{\bar{t} \in \bar{S} \mid \bar{a} \in \bar{a} o \bar{t}\}=\bar{S}, \quad \bar{a}_{r}=\{\bar{t} \in \bar{S} \mid \bar{t} \in \bar{t} o \bar{a}\}=\bar{S}, \quad \forall \bar{a} \in \bar{S}
$$

It is clear that \bar{S} is a strong hyper $B C K$-ideal. So $\left(\bar{S}, o, \overline{s_{0}}\right)$ is a strong normal hyper $B C K$-algebra.

Theorem 4.4. Let $\left(\bar{S}, o, \bar{s}_{0}\right)$ be the hyper $B C K$-algebra, which is defined in Theorem 4.1. Then $\left(\bar{S}, o, \overline{s_{0}}\right)$ is a simple hyper $B C K$-algebra.
Proof. Let $\overline{s_{1}} \neq \overline{s_{2}}$ and $\overline{s_{1}}, \overline{s_{2}} \neq \overline{s_{0}}$. Then $\overline{s_{1}} o \overline{s_{2}}=\overline{s_{1}}$ and $\overline{s_{2}} o \overline{s_{1}}=\overline{s_{2}}$. Hence, $\overline{s_{1}} \not \leq \overline{s_{2}}$ and $\overline{s_{2}} \not \leq \overline{s_{1}}$. So $\left(\bar{S}, o, \overline{s_{0}}\right)$ is a simple hyper $B C K$-algebra.
Theorem 4.5. Let $\left(\bar{S}, o, \overline{s_{0}}\right)$ be the hyper $B C K$-algebra, which is defined in Theorem 4.1. Then $\left(\bar{S}, o, \overline{s_{0}}\right)$ is an implicative hyper $B C K$-algebra.
Proof. Since $\overline{s_{1}} \in \overline{s_{1}} o \overline{s_{2}}$ and $\overline{s_{1}} o \overline{s_{2}} \neq \emptyset$ for all $\overline{s_{1}}, \overline{s_{2}} \in \bar{S}$, we obtain that $\overline{s_{1}} \in \overline{s_{1}} o\left(\overline{s_{2}} o \overline{s_{1}}\right)$. So $\overline{s_{1}} \ll \overline{s_{1}} o\left(\overline{s_{2}} o \overline{s_{1}}\right)$ and $\left(\bar{S}, o, \overline{s_{0}}\right)$ is an implicative hyper $B C K$-algebra.
Definition 4.6. A deterministic finite automaton (S, M, s_{0}, F, t) is called semi continuous if for all distinct elements $s, s^{\prime} \in S$, the following implication holds: If $\exists x \in M^{*}$, such that $s^{\prime}=t^{*}(s, x) \Rightarrow \nexists x^{\prime} \in M^{*}$, such that $s=t^{*}\left(s^{\prime}, x^{\prime}\right)$.
Theorem 4.7. Let $\left(S, M, s_{0}, F, t\right)$ be a semi continuous deterministic finite automata. We define the following hyper operation on S :

Then $\left(S, o, s_{0}\right)$ is a hyper $B C K$-algebra and s_{0} is the zero element of S. Proof. First we consider the following situations to prove (HK1) and (HK2).
(i) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, \quad s_{2}$ is connected to s_{1}, s_{3} is connected to s_{1} and s_{3} is connected to s_{2}.
Then $\left(s_{1} \circ s_{3}\right) o\left(s_{2} \circ s_{3}\right)=\left\{s_{1}, s_{0}\right\}$ o $\left\{s_{2}, s_{0}\right\}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} o s_{2}=$ $\left\{s_{1}, s_{0}\right\}$. Since $s_{1} o s_{1}=s_{0}$ and $s_{0} o s_{1}=s_{0}$, we obtain that $s_{1} \ll s_{1}$ and $s_{0} \ll s_{1}$. So in this case (HK1) holds.
On the other hand, ($s_{1} \circ s_{2}$) o $s_{3}=\left\{s_{1}, s_{0}\right\}$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=$ $\left\{s_{1}, s_{0}\right\}$ o $s_{2}=\left\{s_{1}, s_{0}\right\}$. Thus in this case (HK2) holds.
(ii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, \quad s_{2}$ is not
connected to s_{1}, s_{3} is connected to s_{1} and s_{3} is connected to s_{2}.
Then $\left(s_{1} \circ s_{3}\right) o\left(s_{2} \circ s_{3}\right)=\left\{s_{1}, s_{0}\right\} \quad o\left\{s_{2}, s_{0}\right\}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} o s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{1}$, we conclude that in this case (HK1) holds.
Also ($s_{1} \circ s_{2}$) o $s_{3}=\left\{s_{1}\right\}$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} \circ s_{3}\right)$ o $s_{2}=\left\{s_{1}, s_{0}\right\} \circ s_{2}=$ $\left\{s_{1}, s_{0}\right\}$. Therefore in this case (HK2) holds.
(iii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, \quad s_{2}$ is
connected to s_{1}, s_{3} is not connected to s_{1} and s_{3} is connected to s_{2}. Since s_{2} is connected to s_{1} and s_{3} is connected to s_{2}, we get that s_{3} is connected to s_{1}. So this case does not happen.
(iv) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, \quad s_{2}$ is connected to s_{1}, s_{3} is connected to s_{1} and s_{3} is not connected to s_{2}.
Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=\left\{s_{1}, s_{0}\right\} \quad o s_{2}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} \circ s_{2}=\left\{s_{1}, s_{0}\right\}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{1}$, we obtain that in this case (HK1) holds.

Also (s_{1} o s_{2}) o $s_{3}=\left\{s_{1}, s_{0}\right\}$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} \circ s_{3}\right)$ o $s_{2}=\left\{s_{1}, s_{0}\right\}$ o $s_{2}=$ $\left\{s_{1}, s_{0}\right\}$. Hence, in this case (HK2) holds.
(v) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, \quad s_{2}$ is not connected to s_{1}, s_{3} is not connected to s_{1} and s_{3} is connected to s_{2}.
Then $\left(s_{1} o s_{3}\right) o\left(s_{2} \circ s_{3}\right)=s_{1} o\left\{s_{2}, s_{0}\right\}=s_{1}$ and $s_{1} o s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ we conclude that in this case (HK1) holds.
On the other hand, $\left(s_{1} o s_{2}\right) \circ s_{3}=s_{1} o s_{3}=s_{1}$ and $\left(s_{1} o s_{3}\right) \circ s_{2}=s_{1} o s_{2}=$ s_{1}. Thus in this case (HK2) holds.
(vi) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, \quad s_{2}$ is not connected to s_{1}, s_{3} is connected to s_{1} and s_{3} is not connected to s_{2}.
Then $\left(s_{1} \circ s_{3}\right) o\left(s_{2} \circ s_{3}\right)=\left\{s_{1}, s_{0}\right\}$ o $s_{2}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{1}$, we get that in this case (HK1) holds.
Also ($s_{1} \circ s_{2}$) o $s_{3}=s_{1} \circ s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} \circ s_{3}\right) \circ s_{2}=\left\{s_{1}, s_{0}\right\}$ o $s_{2}=$ $\left\{s_{1}, s_{0}\right\}$. So in this case (HK2) holds.
(vii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, s_{2}$ is connected to s_{1}, s_{3} is not connected to s_{1} and s_{3} is not connected to s_{2}.
Then $\left(s_{1} \circ s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=s_{1}$ o $s_{2}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} \circ s_{2}=\left\{s_{1}, s_{0}\right\}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{1}$, we obtain that in this case (HK1) holds.
On the other hand, (s_{1} o s_{2}) o $s_{3}=\left\{s_{1}, s_{0}\right\}$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=$ $s_{1} o s_{2}=\left\{s_{1}, s_{0}\right\}$. Therefore in this case (HK2) holds.
(viii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, s_{3} \neq s_{1} \neq s_{2} \neq s_{3}, s_{2}$ is not connected to s_{1}, s_{3} is not connected to s_{1} and s_{3} is not connected to s_{2}.
Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=s_{1} \circ s_{2}=s_{1}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ we conclude that in this case (HK1) holds.
Also ($s_{1} o s_{2}$) o $s_{3}=s_{1} o s_{3}=s_{1}$ and $\left(s_{1} o s_{3}\right) o s_{2}=s_{1} o s_{2}=\mathrm{s}_{1}$. Hence, in this case (HK2) holds.
(ix) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{1}=s_{2} \neq s_{3}$ and s_{3} is connected to s_{1}.

Then $\left(s_{1} o s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=\left\{s_{1}, s_{0}\right\} o\left\{s_{2}, s_{0}\right\}$
$=s_{0}$ and $s_{1} o s_{2}=s_{0}$. Since $s_{0} \ll s_{0}$ we get that in this case (HK1) holds.
On the other hand, ($s_{1} o s_{2}$) o $s_{3}=s_{0} o s_{3}=s_{0}$ and $\left(s_{1} o s_{3}\right) \circ s_{2}=$ $\left\{s_{1}, s_{0}\right\}$ o $s_{1}=s_{0}$. Thus in this case (HK2) holds.
(x) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{1}=s_{2} \neq s_{3}$ and s_{3} is not connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) o\left(s_{2} \circ s_{3}\right)=s_{1} \circ s_{2}=s_{0}$ and $s_{1} \circ s_{2}=s_{0}$. Since $s_{0} \ll s_{0}$ we obtain that in this case (HK1) holds.
Also (s_{1} o s_{2}) o $s_{3}=s_{0}$ o $s_{3}=s_{0}$ and ($s_{1} o s_{3}$) o $s_{2}=s_{1} o s_{1}=\mathrm{s}_{0}$. So in this case (HK2) holds.
(xi) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, s_{1}=s_{3} \neq s_{2}$ and s_{3} is connected to s_{2}. By definition of semi continuous automaton we know that when s_{3} is connected to s_{2} then s_{2} is not connected to s_{3} or s_{1}.
So $\left(s_{1} \circ s_{3}\right) o\left(s_{2} \circ s_{3}\right)=s_{0} \circ\left\{s_{2}, s_{0}\right\}=s_{0}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{0} \ll s_{1}$ we conclude that in this case (HK1) holds.

On the other hand, $\left(s_{1} \circ s_{2}\right) \circ s_{3}=s_{1} \circ s_{1}=s_{0}$ and $\left(s_{1} o s_{3}\right) \circ s_{2}=s_{0} \circ s_{2}=$ s_{0}. Hence, in this case (HK2) holds.
(xii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{1}=s_{3} \neq s_{2}, s_{3}$ is not connected to s_{2} and s_{2} is connected to s_{3}. Then we have
$\left(s_{1} o s_{3}\right) o\left(s_{2} \circ s_{3}\right)=s_{0} \circ s_{2}=s_{0}$ and $s_{1} o s_{2}=\left\{s_{1}, s_{0}\right\}$. Since $s_{0} \ll s_{1}$ we get that in this case (HK1) holds.
Also $\left(s_{1} o s_{2}\right) ~ o s_{3}=\left\{s_{1}, s_{0}\right\} \quad o s_{1}=s_{0}$ and $\left(s_{1} o s_{3}\right) ~ o s_{2}=s_{0} o s_{2}=s_{0}$. Therefore in this case (HK2) holds.
(xiii) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{1}=s_{3} \neq s_{2}, \quad s_{3}$ is not connected to s_{2} and s_{2} is not connected to s_{3}. Then we have ($\left.s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=s_{0} o s_{2}=s_{0}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{0} \ll s_{1}$ we obtain that in this case (HK1) holds.
Also ($s_{1} \circ s_{2}$) o $s_{3}=s_{1} \circ s_{1}=s_{0}$ and $\left(s_{1} \circ s_{3}\right)$ o $s_{2}=s_{0} \circ s_{2}=s_{0}$. Thus in this case (HK2) holds.
(xiv) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, s_{1} \neq s_{2}=s_{3}$ and s_{3} is connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=\left\{s_{1}, s_{0}\right\}$ o $s_{0}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} \circ s_{2}=\left\{s_{1}, s_{0}\right\}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{0}$ we conclude that in this case (HK1) holds.
On the other hand, $\left(s_{1} o s_{2}\right)$ o $s_{3}=\left\{s_{1}, s_{0}\right\} \quad o s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=$ $\left\{s_{1}, s_{0}\right\}$ o $s_{2}=\left\{s_{1}, s_{0}\right\}$. So in this case (HK2) holds.
(xv) Let $s_{1}, s_{2}, s_{3} \neq s_{0}, \quad s_{1} \neq s_{2}=s_{3}$ and s_{3} is not connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=s_{1} \quad o s_{0}=s_{1}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ we get that in this case (HK1) holds.
Also ($s_{1} \circ s_{2}$) o $s_{3}=s_{1} \circ s_{3}=s_{1}$ and $\left(s_{1} o s_{3}\right) \circ s_{2}=s_{1} \circ s_{2}=s_{1}$. Hence, in this case (HK2) holds.
(xvi) Let $s_{1}=s_{2}=s_{3}$. Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=s_{0} \quad o s_{0}=s_{0}$ and $s_{1} o s_{2}=s_{0}$. Since $s_{0} \ll s_{0}$ we obtain that in this case (HK1) holds.
Also ($s_{1} o s_{2}$) o $s_{3}=s_{0} o s_{3}=s_{0}$ and ($s_{1} o s_{3}$) o $s_{2}=s_{0} o s_{2}=s_{0}$. Therefore in this case (HK2) holds.
(xvii) Let $s_{1}=s_{0}$. Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=s_{0} o\left(s_{2} o s_{3}\right)=s_{0}$ and $s_{1} o s_{2}=s_{0}$. Since $s_{0} \ll s_{0}$ we conclude that in this case (HK1) holds.
On the other hand, $\left(s_{1} o s_{2}\right) \circ s_{3}=s_{0} \circ s_{3}=s_{0}$ and $\left(s_{1} o s_{3}\right) \circ s_{2}=s_{0} \circ s_{2}=$ s_{0}. Thus in this case (HK2) holds.
(xviii) Let $s_{2}=s_{0}, s_{3} \neq s_{1}, s_{1} \neq s_{0} \neq s_{3}$ and s_{3} is connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=\left\{s_{1}, s_{0}\right\}$ o s_{0} $=\left\{s_{1}, s_{0}\right\}$ and $s_{1} o s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{1}$, we get that in this case (HK1) holds.
Also (s_{1} o s_{2}) o $s_{3}=s_{1}$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=s_{1} \circ s_{3}=\left\{s_{1}, s_{0}\right\}$. So in this case (HK2) holds.
(xix) Let $s_{2}=s_{0}, s_{3} \neq s_{1}, s_{1} \neq s_{0} \neq s_{3}$ and s_{3} is not connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) o\left(s_{2} \circ s_{3}\right)=s_{1} \circ s_{0}=s_{1}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ we obtain that in this case (HK1) holds.
On the other hand, $\left(s_{1} o s_{2}\right) \circ s_{3}=s_{1} o s_{3}=s_{1}$ and $\left(s_{1} o s_{3}\right) \circ s_{2}=s_{1} \circ s_{2}=$ s_{1}. Hence, in this case (HK2) holds.
(xx) Let $s_{2}=s_{0}, s_{3}=s_{1}$ and $s_{1} \neq s_{0} \neq s_{3}$. Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=$ $s_{0} \circ s_{0}=s_{0}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{0} \ll s_{1}$ we conclude that in this case (HK1) holds.
Also ($s_{1} o s_{2}$) o $s_{3}=s_{1}$ o $s_{3}=s_{0}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=s_{0} o s_{0}=s_{0}$. Therefore in this case (HK2) holds.
(xxi) Let $s_{3}=s_{0}, s_{2} \neq s_{1}, s_{1} \neq s_{0} \neq s_{2}$ and s_{2} is connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=s_{1} \circ s_{2}=\left\{s_{1}, s_{0}\right\}$ and $s_{1} \circ s_{2}=\left\{s_{1}, s_{0}\right\}$. Since $s_{1} \ll s_{1}$ and $s_{0} \ll s_{0}$, we get that in this case (HK1) holds.
On the other hand, $\left(s_{1}\right.$ o $\left.s_{2}\right)$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ o $s_{3}=\left\{s_{1}, s_{0}\right\}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=$ $s_{1} o s_{2}=\left\{s_{1}, s_{0}\right\}$. So in this case (HK2) holds.
(xxii) Let $s_{3}=s_{0}, s_{2} \neq s_{1}, s_{1} \neq s_{0} \neq s_{2}$ and s_{2} is not connected to s_{1}. Then $\left(s_{1} \circ s_{3}\right) \circ\left(s_{2} \circ s_{3}\right)=s_{1} \circ s_{2}=s_{1}$ and $s_{1} \circ s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ we obtain that in this case (HK1) holds.
Also ($s_{1} o s_{2}$) o $s_{3}=s_{1} \circ s_{3}=s_{1}$ and $\left(s_{1} o s_{3}\right)$ o $s_{2}=s_{1} o s_{2}=s_{1}$. Hence, in this case (HK2) holds.
(xxiii) Let $s_{3}=s_{0}, s_{2}=s_{1}$ and $s_{1} \neq s_{0} \neq s_{2}$. Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=$ $s_{1} o s_{2}=s_{0}$ and $s_{1} o s_{2}=s_{0}$. Since $s_{0} \ll s_{0}$ we conclude that in this case (HK1) holds.
On the other hand, $\left(s_{1}\right.$ o $\left.s_{2}\right)$ o $s_{3}=s_{0} \circ s_{0}=s_{0}$ and $\left(s_{1}\right.$ o $\left.s_{3}\right)$ o $s_{2}=s_{1} o s_{2}=$ s_{0}. Therefore in this case (HK2) holds.
(xxiv) Let $s_{2}=s_{3}=s_{0}$ and $s_{1} \neq s_{0}$. Then $\left(s_{1} o s_{3}\right) o\left(s_{2} o s_{3}\right)=s_{1} o s_{0}=s_{1}$ and $s_{1} o s_{2}=s_{1}$. Since $s_{1} \ll s_{1}$ we get that in this case (HK1) holds.
Also (s_{1} o s_{2}) o $s_{3}=s_{1}$ o $s_{0}=s_{1}$ and (s_{1} o s_{3}) o $s_{2}=s_{1} o s_{0}=s_{1}$. Thus in this case (HK2) holds.
So we obtain that $\left(S, o, s_{0}\right)$ satisfies (HK1) and (HK2).
Now we should prove that (S, o, s_{0}) satisfies (HK3). By Theorem 2.11, it is enough to show that $s_{1} O s_{2} \ll\left\{s_{1}\right\}$ for all $s_{1}, s_{2} \in S$. By definition of the hyper operation "o" we know that $s_{1} o s_{2}$ is equal to s_{1} or $\left\{s_{1}, s_{0}\right\}$ or s_{0} for any $s_{1}, s_{2} \in S$. Also we know that $\mathrm{s}_{1} \ll \mathrm{~s}_{1}$ and $\mathrm{s}_{0} \ll \mathrm{~s}_{1}$.
Hence $\left(S, o, s_{0}\right)$ satisfies (HK3).
To prove (HK4), Let $s_{1} \ll s_{2}$ and $s_{2} \ll s_{1}$. If $s_{1}=s_{2}$, then we are done. Otherwise, since $s_{1} \ll s_{2}$, there exist two cases:
(i) s_{2} is connected to $s_{1}, s_{1}, s_{2} \neq s_{0}$ and $s_{1} \neq s_{2}$. Then by definition of semi continuous automaton we know that s_{2} is not connected to s_{1} and we have $s_{2} O s_{1}=s_{2}$. Therefore $s_{2} \not \leq s_{1}$, which is a contradiction.
(ii) $s_{1}=s_{0}, s_{2} \neq s_{0}$. Then $s_{2} o s_{1}=s_{2} o s_{0}=s_{2}$. Thus $s_{2} \not \leq s_{1}$, which is a contradiction.
So we show that $\left(S, o, s_{0}\right)$ is a hyper $B C K$-algebra.
Theorem 4.8. Let $\left(S, o, s_{0}\right)$ be a hyper $B C K$-algebra which is defined in Theorem 4.7. Then $\left(S, o, s_{0}\right)$ is a weak normal hyper $B C K$-algebra.
Proof. By definition of the hyper operation "o", we know that $a_{r}=\{t \in S \mid t \in$ t o $a\}=S-\{a\}$ for all $a \neq s_{0}$ and $a \in S$. Also $a_{r}=S$ for $a=s_{0}$.

It is clear that S is a weak hyper $B C K$-ideal. So it is enough to show that $S-\{s\}$ for all $s \neq s_{0}$ and $s \in S$, is a weak hyper $B C K$-ideal.
It is easy to see that $s_{0} \in S-\{s\}$. Let $s_{1} o s_{2} \subseteq S-\{s\}$ and $s_{2} \in S-\{s\}$. Then we have to consider the following situations:
(1) s_{2} is connected to $s_{1}, \quad s_{1}, s_{2} \neq s_{0}$ and $s_{1} \neq s_{2}$.

Sinces ${ }_{1}$ o $s_{2}=\left\{s_{1}, s_{0}\right\}$ and s_{1} o $s_{2} \subseteq S-\{s\}$, we obtain that $s_{1} \in S-\{s\}$.
(2) s_{2} is not connected to $s_{1}, \quad s_{1}, s_{2} \neq s_{0}$ and $s_{1} \neq s_{2}$.

Sinces ${ }_{1} \circ s_{2}=s_{1}$ and s_{1} o $s_{2} \subseteq S-\{s\}$, we get that $s_{1} \in S-\{s\}$.
(3) $\mathrm{s}_{1}=s_{2}$.

Since $s_{2} \in S-\{s\}$, it is clear that $s_{1} \in S-\{s\}$.
(4) $\mathrm{s}_{1}=s_{0}, \quad s_{2} \neq s_{0}$.

Sinces ${ }_{1} o s_{2}=s_{0}$ and $s_{0} \in S-\{s\}$, we obtain that $s_{1} \in S-\{s\}$.
(5) $\mathrm{s}_{2}=s_{0}, \quad s_{1} \neq s_{0}$.

Sinces ${ }_{1} \circ s_{2}=s_{1}$ and s_{1} o $s_{2} \subseteq S-\{s\}$, we conclude that $s_{1} \in S-\{s\}$.
So (S, o, s_{0}) is a weak normal hyper $B C K$-algebra.
Example 4.9. Consider the deterministic finite automaton $A=\left(S, M, s_{0}, F, t\right)$ in Example 3.3. Then the structure of the hyper $B C K$-algebra (S, o, s_{0}) induced on the states of this automaton according to Theorem 4.7 is as follows:

Table 3.

O	q_{0}	q_{1}	q_{2}	q_{3}
q_{0}	q_{0}	q_{0}	q_{0}	q_{0}
q_{1}	q_{1}	q_{0}	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}\right\}$
q_{2}	q_{2}	q_{2}	q_{0}	$\left\{q_{0}, q_{2}\right\}$
q_{3}	q_{3}	q_{3}	q_{3}	q_{0}

Thus $\left(S, o, s_{0}\right)$ is a hyper $B C K$-algebra.
Remark 4.10. Let $\left(S, o, s_{0}\right)$ be the hyper $B C K$-algebra which is defined in Theorem 4.7. In example 4.9, we saw that $q_{0} \in q_{1} O q_{3}$ and $q_{0} \notin q_{3} O q_{1}$. So $q_{1} \ll q_{3}$ and $q_{3} \not \leq q_{1}$. Hence, $\left(S, o, s_{0}\right)$ may not be simple.

Acknowledgement. We are grateful to the referees for their valuable suggestions, which have improved this paper.

References

[1] A. Borumand Saeid, M. M. Zahedi ," Quotient hyper BCK-algebras ", Quasigroups and Related Systems, 12 (2004), 93-102.
[2] A. Borumand Saeid, "Topics in hyper K-algebras ", Ph.D. Thesis, Islamic Azad University, Science and Research Branch of Kerman, 2004.
[3] P. Corsini, "Prolegomena of hypergroup theory ", Aviani Edittore, Italy, 1993.
[4] P. Corsini, V. Leoreanu, "Applications of hyperstructure theory ", Advances in Mathematics, Vol. 5, Kluwer Academic Publishers, 2003.
[5] J. E. Hopcroft, R. Motwani, J. D. Ullman, "Introduction to automata theory, languages and computation", seconded, Addision -wesley, Reading, MA, 2001.
[6] Y. Imai, K. Iseki, "On axiom systems of propositional calculi", XIV Proc. Japan Academy, 42 (1966), 19-22.
[7] Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, "Strong hyper BCK-ideals of hyper BCK-algebras ", Math. Japon, 51, no. 3 (2000), 493-498.
[8] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei," On hyper BCK-algebras ", Italian Journal of Pure and Applied Mathematics, 8 (2000), 127-136.
[9] F. Marty, "Sur une generalization de la notion de groups ", 8th Congress Math. Scandinaves, Stockholm, (1934), 45-49.
[10] J. Meng, Y.B. Jun, " BCK-algebra ", Kyung Moonsa, Seoul, 1994.
[11] T. Roodbari, " Positive implicative and commutative hyper K-ideals ", Ph.D. Thesis, Shahid Bahonar University of Kerman, Dept. of Mathematics, 2008.
[12] L. Torkzadeh, T. Roodbari, M. M. Zahedi, "Hyper stabilizers and normal hyper BCKalgebras ", Set - Valued Mathematics and Applications, to appear.

[^0]: * Corresponding Author

